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Dipmimento di Rsica. UniversitA di Bari, Italy. and IstiNto Nazionale di Fisica N u c i e ,  
Sezione di Bari, Italy 

Received 22 April 1993, in final form 23 June 1993 

Abstract The square Ising lattice with nearest- and next-nearest-neighbour interactions is 
considered. On the basis of the simplest ansatz on the principal eigenvector of the transfer 
matrix of the model and of the CLE condition, developed in previous papers, the correlation 
length along a column is calculated for all T 1. Tc, in lhe ferromagnetic and antiferromagnetic 
regions. A comparison is made with mulls obtained Ouovgh other methods. For competing 
inleracuons, it is shown that there is a mechanism which leads to a correlation lengUl made of 
two analytic pieces. 

1. Introduction 

In this paper we consider a square lattice Ising model with first- and .second-neighbour 
interactions, described by the Hamiltonian 

where (i, j )  refers to the nearest-neighbour pairs, while [i, j ]  stands for the summation over 
the next-nearest-neighbour pairs. We will make use of the parameters K I  = J t j k T ,  KZ = 

Due to its non-planar character, the above model is not exactly soluble. However, 
many of its very interesting properties have been conjectured or determined through various 
approximate methods, ranging from closed-form approximations (Fan and Wu 1969, Gibbed 
1969, Burkhardt 1978). renormalization-group (RG) calculations (Nauenberg and Nienhuis 
1974, van Leeuwen 1975, Nightingale 1977). Monte Carlo (MC) simulations (Landau 1980). 
combined MC and RG method (Swendsen and Krinsky 1979). series analysis of high- 
temperature expansions (Dalton and Wood 1969. Oitmaa 1981), and perturbation theory 
(Barber 1979). 

In this paper we report some calculations on the model (l.l), concerning its correlation 
length along a column (or a row). The whole region T T, is considered. We follow 
the approach developed in the previous works (Villani 1990, Angelini er al 1992). which 
is based on the correlation length equality (CU) for probability distributions on strips of 
spins. 

We start from the probability PI ( U )  of a spin configuration U = (SI, 82, . , .) on a column, 
which is given by P I @ )  = Y~(u),  where rlrl(u) is the eigenvector of the symmetrized 

JZ/kT andp = K z f K l .  

0305-4470,’93!205207+12$07..50 @ 1993 IOP Publishing Ltd 5207 



5208 L Angelini et a1 

transfer matrix L(ulu‘) of ou,’ model, associated to its highest eigenvalue. We introduce 
the simplest parametrization & ( U )  of Pl(u), in a Boltzmann form, given by 

Essentially, having fixed the attention on a column, we take into account, through E ,  
of the summation over the configurations of all the other columns, by replacing the original 
coupling K I  between the spins on a column by an effective coupling 2A, which is a function 
of K1 and Kz. 

In principle, the above ansatz GI(u) makes sense only in some regions of the coupling 
plane (K1, K Z ) .  For K1 > 0, p > -+ (region I) (K1 6 0, p < + (region w) our 
system has a ferromagnetic (antiferromagnetic) ground state. So GI (u )  can be a reliable 
description in region I (ID, with A > 0 (A < 0). as long as p ( -p )  is not very large; in 
the limit IpI + +m, the lattice is decomposed into two independent square sub-lattices. In 
region III, that is KZ c 0, IpI > $. the ground state, with its extra two-fold degeneracy, is 
‘superantiferromagnetic’. The simple parametrization (1.2) does not take into account of a 
such situation. Of course it can be implemented through proper corrections. 

However, due to its simplicity. in the following we will make use of (1.2) and we will 
limit ourselves to region I, also adding the case p = -4. Region II can be analyzed through 
a similar procedure and we will mention briefly the analogous results. A particular attention 
will be fixed on the interesting domain KI z 0, -+ < p c 0 of competing ferromagnetic 
and antiferromagnetic couplings, where our approach allows to get some m e r ,  new insight 
into the properties of the model. Our results, based on (l.2), are deduced From the CLE 
condition, whose simplest version is introduced and discussed in the next section. 

2. The CLE condition for one and two columns 

Besides PI (U) ,  let us consider the probability Pz = P ( u I ,  UZ) of a spin configuration ( U ) ,  u2) 

on two adjacent columns, regardless of the configurations of the other columns. We have 
(Villani 1990) 

9 = P(U1.S) = ~ l ~ ~ l ~ w l l u z ~ ~ l ~ ~ z ~  . (2.1) 

Obviously, Pl(u1) is the marginal distribution for the set ul, deduced from the joint 
distribution P(ul,u2). Then all the statistical quantities along a column are the same for 
both of them. 

Now, if we consider the ansatz @,(U] ) ,  instead of (2.1) we get the distribution for two 
adjacent columns 

F*= F(U1,UZ) =~l (u l )L(u l luz~~ l (u2~ .  (2.2) 

& describes a system of spins on two adjacent columns, interacting through the same 
couplings of the original Hamiltonian (1.1). except along the columns, where K1 is replaced 
by the effective-coupling A + K1/2. 

As a rule, Pz does not reproduce 6 (U, )  exactly if we sum over the set uz. However, 
having a parameter in (1.2. the marginality properties of the exact distribution PI(UI )  can 
be parrially satisfied by P ~ ( u I ) ,  if we fix our attention only on one statistical quantity. 
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Now, a statistical quantity that has a relevant and unique role is provided by the correlation 
length, so that we impose as a marginality requirement the consistency condition (villani 
1990, Angelini et a1 1992) 

where .$D is the correlation length of and .$N is the correlation length along a column, 
associatei, with 9. Equation (2.3). which we call the CLE condition, allows to fix the 
parameter A and to calculate the correlation length along a column .$ = .$D = &v. 

This approach differs from the standard variational method, where the parameter A is 
fixed by considering the sup of the Rayleigh-Ritz quotient 

(2.4) 

in order to get the best approximation to the free. energy. It can be seen that (2.4) l e  
also to a marginality condition. This condition is expressed by the equality for fl and PZ 
of the short distances correlation function (sisi+,) along a column (Rujin 1979). 

Coming back to (2.3), we have first of a11 

1 
t0 
- = Incoth2A . 

In order to obtain SN, we note that with the distribution F(q, UZ) is associated with the 
4 x 4 transfer matrix 

If 

f& = e*'# cosh(2A t K I  ct 2 K z )  (27) 

we have that 61, the highest eigenvalue of l (which is associated with an eigenstate of 
positive parity), is given by 

gk = 2e"" sinh(2A t K I  f 2 K z )  

81 = f+ + f- t J4+ (f+ - f-Y 
while g* are the eigenvalues of l with eigenstates of negative parity. So if 

82 = mNgt. ,g- l  

we have 

(2.9) 

(2.10) 

and (2.3) becomes 

(2.11) 



5210 L Angelini et al 

This equation can be solved analytically and gives the parameter A, and then the correlation 
length 6 ,  in terms of elementary functions of KI  and Kz. At fixed K2. we obtain a unique 
finite value A ( K I .  Kz) for every K l  < KI , (KZ)  while for K I  2 K1,(Kz) (2.1 1) is satisfied 
only by A = +w, giving the usual mechanism of second order phase transition, that is the 
highest eigenvalues degeneracy. 

We also have 

(2.12) 

The critical C U N ~  so obtained is given explicitly by 

K ~ . ( K ~ )  = + ~ n ( l +  - 2 ~ ’  (2.13) 

For Kz = 0, we obtain the well known exact value 4 In( I + a). 
the domains p 2 0, -; < p < 0 and p = -+. 
(2.11) we obtain ~ ( K I ,  Kz) as a unique analytic function of K, and K2, given by 

It turns out that, in order to describe the behaviour of 6 ,  we have to distinguish between 

When p > 0, we have that 62 = g+. As a consequence, for 0 < K l  4 Klc(K2), from 

cosh’ K1 - sinh”2.K’ L / r  + 1 1  1 
Again, for K2 = 0, we obtain the exact Onsager result (Villani 1990) 

(2.14) 

(2.15) 

Furthennore, as a consequence of the analytic behaviour of I/[, the critical exponent U 

deduced from (2.14) is equal to 1, for every fixed p.  in agreement with previous predictions. 
Our calculation allows us to see the analytic origin of this value and of the universality 
concept. 

When -f < p < 0, the competition between the ferromagnetic and the anti- 
ferromagnetic interactions gives rise to a relevant phenomenon. While for p 2 0 we 
always have g+ > g-, for p < 0 these two eigenvalues of negative parity may cross each 
other at some values of A,  K, and K2. This crossing does not take place in the proximity 
of the critical point. There is a finite value Kls(K2) of KI .  such that K l , ( K z )  < K l c ( K z )  
and, for K l r ( K 2 )  < K I  < K,,(K2), the equation (2.1 I )  is solved with 62 = g+, as happens 
in the case p 2 0. In this interval of K I ,  the correlation length is given again by (2.14). 
So the above comment about the exponent U is also valid for -; < p < 0. However, for 
0 < K I  < K1,(K2), (2.1 I )  is solved with 82 = 8- .  In this last interval we have 

sinh2Kl sinh(KI - 2K2) e2K>-KI ‘ I 2(coshZ K I  - sinh’2K~) 
= - I n  

1 
~ ( K I ,  K z )  

X[J1--1]}.  cosh’ KI  - sinh22K2 
(2.16) 
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Thus we obtain acorrelation length which is continuous, but made of two analytic pieces, 
which match at the singular point KI,. This point is a monotonic decreasing function of 
K2, given by 
Kl , (K2)  = 4 In[cosh2K2 - e-2Kz sinh2K2 + J(cosh2Kz - 

In terms of p, we have 

sinh2K# - 11 
(2.17) 

lim Kl,(p) = +CO lim K&) = 0. (2.18) 
p+-1/2+ 0-0- 

From (2.13) it also follows that 
lim Kl&) = +CO. 

p--i/z+ 
(2.19) 

Then we deduce that, for p = -A, KI > 0. the correlation length is given by a unique 
analytic function of KI,  which can be obtained from (2.16) by putting Kz = -$KI. We 
have 

We obtain T&$) = 0, in agreement with previous arguments given in the literature. Near 
the critical point, that is for large values of K I ,  we deduce from (2.20) the exponential 
behaviour 

We could say that the critical exponent v, at p = -4, is +CO. 

The above m+ts haxe been obtained in a simple and analytic way by making use of 
the distributions PI and P2 in the CLE condition. Now we discuss a test of their reliability, 
which, at the same time, allows us to improve, as far as possible, the calculations done 
before. 

On the basis of the spectral representation of the transfer matrix L(ulu') and of the 
Penon-Frobenius theorem, we have that, if L is applied repeatedly to Gl(u), we reach an 
'equilibrium' state which, actually, is described by Wl(u) (Mattis 1985). So, if VI@) is an 
approximation to ~ ~ ( u ) ,  we expect that the action of L on Gl(u) allows us to get closer 
to the properties of * , (U ) .  If, hypothetically, *, (U) = *!(U), the repeated action of L 
would not change the state. Then we are led to consider the further distributions 

1/5(KI) = 4 e - 2 K l  . (2.21) 

6 = p"(ui,022.~3) = Gi~uI~L~ul1u2~L~u*1u3~sI~u~~ 
p"4 = p"(Ui ,U2~U3,Ud = ~ i ~ u I ~ L ~ u , 1 u 2 ~ L ~ u 2 l u ~ ~ L ~ u 3 1 u ~ ~ ~ i ~ u 4 ~  (2.22) 

for strips made of three adjacent columns, four adjacent columns, and so on. A similar 
procedure appears in a recent approach to the calculation of the critical temperature 
(Lipowski and Suzuki 1992). 

Now, if we consider two distributions 6 and &i # j )  and demand that they have the 
same correlation length along the columns, we obtain generally a new equation and a new 
evaluation of e .  These evaluations can be considered reliable if they show a significant 
consistency between them or if they are not changed significantly by going to distributions 
of higher order. 

The calculation of the correlation length as a functiof! of A,  for each 6, can be done 
by making use of the transfer matrix formalism. With P; is associated a 2' x 2' transfer 
matrix, which can be reduced and simplified considerably due to its symmetry properties. 
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3. The CLE condition for strips OF size two and three and its consequences 

In  this paper we-repp the results based on the CE. condition applied to the pair P2. 5. 
and to the pair f3 ,  f4, which leads to the evaluations tt2) and of g, respectively. We 
also call t o )  OUT simple calculation of section 2, based on the Fl, 4, and T,")(p) the 
critical curve where !f(() diverges. For the calculation of and 613) we need the higher 
eigenvalues of Hermitian matrices of order thm,  four and six. 

and TJI), T.z ) ,  TJ3) m sonotonic 
decreasing. Depending on the values of p. it is useful to give the critical curves TdO(p) 
either in terms of the parameter KI  or in terms of the parameter K2. 

(In (b )  the dashed line lies between the full and dotted lines.) 
For a large interval of positive values of p, the functions K:(p) (i = 1.2.3) are shown 

in figure l(a). For 0 < p < i, the K$) are practically coincident; in this interval, our first 
simple evaluation (2.13) gives an excellent description of the critical curve. The numerical 
results obtained through a series-expansion method by Dalton and Wood (1969), are well 
reproduced . However, while the numerical data for T&)/T,(O) are fitted through a linear 
law (for 0 < p < 1) 

We obtain that both the sequences e( ' ) ,  e l 2 ) ,  

T(p)/T(O) = 1 + mp (3.1) 

giving m III 1.45, we obtain the slope at p = 0 of the same quantity equal to &, which 
presumably is the exact value. 

As amatter of fact our Ki: ' (p) (2.13) has been already obtained by Fan and Wu (1969). 
through a quite different elaborate procedure, the so-called free fermion approximation. 
However, if one attempts to go beyond this approximation by making use of the perturbation 
theory, the result on the critical curve is not modified. 

On the other hand our approach, through strips of higher size, allows to get some 
improvement. Figure I(a) shows that, in the interval 4 < p < 2, the critical curve is well 
described by K E ( p ) ,  while, for 2 < p < 10, the same property is shared by K F ( p ) .  Our 
predictions are in excellent agreement with the more extensive numerical results obtained 
by Oitmaa (1981) through the series expansion method. 

As we see from figure l(a), in the limit p -+ +m, KL) (p )  do not reproduce the exact 
value K ~ ( + c o )  = In(l +A). Furthermore, for large p. the convergence of the sequence 
K E ( p ) ,  Kg) ,  K Z ( p ) ,  .. seems very weak. Of course, it could be accelerated by making 
use of some standard algorithm. As a matter of fact, when p + +w, the sets of spins 
on a column splits into two independent subsets. As a consequence, our parametrization 
(1.2) is not appropriate for large p and near the critical point, since the above subsets are 
strongly coupled through the effective parameter A. However if we take into account of 
the geometry of our lanice. we have that the simplest parametrization of P ( o ) ,  in the limit 
p + +CO, is given by 

Now, if we apply the C t E  condition to e and to 

(3.3) 
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0.4 : (4 

............................. 
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0.2 

M.C. 
Oitmoo 

A R.G. 

Figure 1. The critical curve calculaled from strips of size one (dotted l ie ) .  two (dashed line) 
and three (full line). ( U )  K& versus p for a large range of positive p's. compared with the 
results of Oihnaa (b )  K t ,  versus p for negative p's. compared with the results of Oihna?. 
of Nauemberg and Nienhuis (no). and of Landau (MO. The straight line shows ow aspptOdC 
behaviour (3.5) for p + -4'. 

in the limit K I  -+ 0, we obtain again the exact value: K;"(+co) = 2 In(l + A). So an 
improved parametrization over the whole range of positive values of p .  would be 

Now, coming back to our +,(U), let us consider the interesting interval -$ < p c 0. 
Our results on the critical curve are shown in figure I@). For -0.3 c p c 0, the three 
functions K ( : ( p )  are practically coincident, while for -+ 6 p 6 -0.3 there is only a small 
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difference. In agreement with several arguments we obtain T:l)(-+) = 0. Furthermore, 
asymptotically for p -P -4' we have 

K?(p) - hZ&$ + p )  (i = 1,2,3) . (3.5) 

There are further diverging log-log corrections to this behaviour, so that the asymptotic 
regime is reached for p very near -4. In figure I(b) the straight line gives the function 
- In22/z(p + 4); we see that, in the range of values of p reported, it differs considerably 
from the functions ~ : ( p ) .  

When we have competing interactions, the series expansion method is faced with 
oscillating or, eventually, irregular results. As a matter of fact, Dalton and Wood, having 
a short series, were unable to obtain the critical curve for p < 0. However Oi", by 
calculating a further five terms in the high-temperature expansion, obtained the critical 
points for -0.4 < p 6 0. But again, for -4 4 p < -0.4, the series becomes irregular and 
no conclusion has been reached. The first results on the critical curve for -4 6 p c 0 have 
been obtained by Nauemberg and Nienhuis (1974). through approximate RG transformations. 
Other estimates have been obtained by Landau (1980) through the MC method. The above 
results, denoted by RG and MC respectively, and the calculations of Oitmaa are reported in 
figure I(/?). While for -0.4 < p < 0, there is a general agreement with our predictions, for 
-4 < p e -0.4 the MC and RG methods get respectively lower and higher values than our 
critical curve. The last MC points on the left are consistent with a straight lie; as a matter 
of fact Landau makes such a linear fit, in order to get consistency in the crossover scaling 
analysis. However, as we have observed, at these points we are not in the asymptotic 
regime. 

Figure 2. The inverse correlation length e-' as a function of K I  for some negative values of 
p, obtained from our three calculations. 

In the above interval -4 < p c 0, the correlation lengths e"'(K1, p )  are shown in 
figure 2, for several values of p. The crossing phenomenon involving the highest eigenvalues 
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of negative parity, is confirmed by the further cLE conditions which lead to t ( ' ) ( K l ,  p )  and 
t t 3 ) ( K 1 ,  p) .  It occurs at the same point K&) given by (2.17) and, as we see in figure 2, 
it is responsible for a singulariry in the temperature dependence of the correlation length, 
given by a discontinuity in the first derivative. Furthermore the phenomenon is present for 
every p such that -4 < p < 0, anticipating the behaviour which occurs at p E -4. As 
a matter of fact, as p + - f+ ,  the above crossing gives the mechanism of the crossover 
behaviour between the T = 0, p = -4 transition and the asymptotic critical behaviour near 
K z ( p ) ( p  # -f), which is characterized by the critical exponent 1' = 1. 

In the limit p + -;, the trend at the left of K&) dominates over the whole 
interval 0 < K I  < +bo. It is exponentially decreasing, when KI + +W. for the three 
evaluations l/t")(Kl)(p = -4). as in (2.21). the difference for I/t''' and being in 
the multiplicative coefficient. Some features of the above crossover behaviour have been 
already observed by Landau in the MC calculations; however, it is difficult to get definite 
conclusions by the MC approach as p + -4, and only consistency arguments with some 
ansaa of the crossover scaling theory, like the exponential behaviour, can be given. 

A M e r  insight into the above transition phenomenon is provided by our approach, if 
we analyse the asymptotic critical behaviour near Kl,(p)(p =- -$. We fix our attention 
on the amplitude u(p)  given by 

We obtain the result that, for the three evaluations ~"'(KI, p).  the leading behaviour of 
u ( p ) ,  as p -+ -4'. is given by 

(3.7) 

So the transition to the regime of strong competition between the ferromagnetic and 
antiferromagnetic couplings, is characterized by a further divergence in the correlation 
length, which appears through its amplitude. In this way we have a kind of matching 
between the exponential behaviour to the left of K d p )  and the linear behaviour to the right 
of the same point. 

Concerning the reliability of the three evaluations c"'(K1, p), we have that up to 
p -0.3, they practically overlap, so that it is sufficient to consider, in this interval, 
~ " ' ( K I .  p ) ;  on the other hand, for p between -0.3 and -0.45, we can limit ourselves to 
t L Z ' ( K ~ ,  p ) .  For p smaller and up to -:, t I 3 ) ( K l ,  p )  provides a more reliable result. In 
any case, for p near -4, the values of KI, for which there is less stability, are not in the 
proximity of the critical point, but at the left of the singular point K&). 

For p 2 0, all the three quantities c"'(KI, Kz) are each described by a unique analytic 
function. The maximum of the discrepancy between tl'), [I2) and el3' appears at the critical 
point, as shown in figure 3, in the case p = IO. As we leave the critical point, they become 
closer and closer. This feature is common to every positive p. As a consequence, for 
pd0, f ] .  ~ " ' ( K I ,  p )  provides a quite g o d  description of the correlation length for every 
T 2 T , ( p ) ,  while this happens for t'')(Kl, p )  if 0 < p < 2. Up to p 2: 10, we have that 
tI3' is a reliable evaluation of the correlation length for every T 2 T&). 

For large p , we see, through the calculation of the three functions t"'(K2. p ) ,  that our 
parametrization (1.2) is not appropriate only near the critical point, where large value of 
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Figure 3. The inverse correlation length 8-l as 8 function of Kz al p = IO calculated for slrips 
of size one (dotted line). WO (dashed line) and three (full line). 

A are required in order to have long-range correlations. However, if we leave the critical 
point, than tL3 ' (Kz ,  p )  gives a reliable result even for large p. In figures 4(u) and 4(b) we 
show .5(3' as a function of Kt and Kz respectively, for several values of p. At p = 0, we 
have that = 6") = 5"' gives the exact Onsager result. In figure 4(b) we show also 
1 /.$ for p = +CO, calculated through (3.2) and (3.3); we get then the exact answer over the 
whole range T To. We note that, when K1 = 0, our correlation length along a column 
becomes the correlation length along a diagonal of a square lattice. 

4. Conclusions 

The above results have been obtained by fixing the attention on region I of the coupling plane 
(KI, Kz). In region II of the antiferromagnetic behaviour ( K I  < 0, p < i), the correlation 
lenghth along a column can be deduced quite easily from the previous calculations. 

First of all, for K1 < 0 and p < 1, we consider in (1.2) a negative effective coupling 
parameter A. It is the same as introducing 

while, for K I  > 0, we always have 

Now, if we consider the distributions 
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Figure 4. The inverse carrelation length 8-l (a) as a function of Ki for small values of p, and 
(b)  as a function of Kz for large values of p. deduced from OUT last calculation. 

we see that-the-pair correlation functions on a column can be obtained, up to a possible 
change in the sig& from the distributions 

G f w .  GI (u~ )L (u~  iu2)G1 ( u ~ ) .  GI (o i )~(o l  IU~)L(SIU~)G~ (SA . . . 
by replacing K I  by - K I  = IRll in L(uIIq). As a consequence our $(i’ are functions of 
(IKI I, Kz). 

In region JE neither & ( U )  nor %,(U)  are appropriate to describe the extra twofold 
degeneracy in the ‘superantifemmagnetic’ behaviour. However, such a situation could be 
analysed through a linear combination of (4.1) and (4.2). In any case, when p is large, it 
Seems more appropriate to add a further parameter, like the coupling E in (3.4). In order 
to fix both the parameters A and E, we can consider a variational procedure constrained by 
the CLF. condition (Angelini et a1 1992). 
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These further analyses, together with generalizations of the model (I.]), will be reported 
elsewhere. 
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